lunes, 1 de junio de 2009

TAXONOMIA MOLECULAR

Gracias a los estudios bioquimicos se ha podido determinar las similitudes y diferencias entre enzimas, proteínas, hormonas, vías de reacción y en las moleculas estructurales importantes. Con el desarrollo de técnicas de secuenciación de aminociácidos en las proteínas, nucleotidos de las moleculas de DNA y RNA, se han podido comparar organismos a través de los genes.

Secuenciación de aminoácidos. Una de las primeras proteínas analizadas en la taxonomía fue el citocromo c que es uno de los transportadores de electrones en la cadena de electrones donde se libera energía para formar ATP, se tomaron varios organismos y se secuenciaron una gran cantidad de moleculas del citocromo c, los que presentaban una mayor diferenciación en los citocromos c presentaban una mayor relación evolutiva, y los que que presentaban una menor diferenciación en los citocromos c había una mayor relación evolutiva, osea que era inversamente proporcional.

Algunos biologos sostienen que estas mutaciones o diferenciaciones son debido a diversas variaciones, otros bilogos sostienen que son al azar.

Las proteínas pueden servir como reloj molecular para saber el momento en que variaron varios grupos.

Un ejemplo para el apoyo de la hipotesis ‘‘tictac aleatorio’’es el siguiente: 2 ranas a través del tiempo mantuvieron su apariencia externa como para ser incluidas en el mismo género pero difirieron en las sustituciones de aminoácidos, tanto como difiere un murcielago de una ballena. El hombre y el chimpancé difieren anatomicamente, pero tienen secuencias identicas en el citocromo c y otras proteínas.

Secuenciación de nucleotidos. La secuenciación de nucletidos es mucho mas fácil que la de aminoácidos, ya que sólo consta de 4 nucleotidos.

A medida que se determinaba la secuencia de acidos nucleicos, esta información se iba ingresando a computadoras, posibilitando comparaciones detalladas. Por ejemplo las moleculas de rRNA y tRNA de los organismos procarioticos han posibilitado por primera vez determinar las relaciones evolutivas ya que si nos fijaramos en sus características estructurales dificilmente se podría describir.

Hibridación DNA-DNA. Consiste en calentar una solución de DNA, la cual se separa o disocia en cadenas simples, y al enfriarse estas se asocian con sus homologos formando un hibrido. Charles G.Sibley y John E.Ahlquist de la

Universidad de Yale idearon una adaptación de esta técnica para la taxonomía.

Primero cortaron DNA de organismos en fragmentos de 500 nucleotidos y eliminaron los segmentos de DNA repetido que representaban al genoma eucariotico. Luego lo agruparon de dos en dos, mezclaron el DNA de una sola copia, lo calentaron y enfriaron y dejaron que ocurriese la hibridación de secuencias homologas. El DNA de una fuente no estaba marcado el otro si, estos estaban en una relación 1000:1, donde había una excesiva cantidad de DNA no marcado. Lo que ocurrió fue que la fuente de DNA no marcada se reasociaron, quedaron cadenas simples, y se formaron hibridos de cadenas marcadas con no marcadas. Se tomaron las cadenas simples y se probó su radiactividad. Cuando se vuelve a calentar la solución, la temperatura a la cual se disocia el 50% de los hibridos refleja el grado de similitud en la secuencia de DNA. Cuanto mayor sea la temperatura, mayores seran las secuencias de DNA.

La temperatura a la cual ocurre el 50% de los hibridos se determina individualmente para el DNA de cada especie. Así se puede comparar el DNA de una especie con otra. La disminución de 1ºC de la temperatura de disociación de el 50% de los hibridos corresponde al 1% de diferencia entre la secuencia de nucleotidos de las dos especies y esto corresponde a 4,5 millones de años de diferencias evolutivas.

TRANSPORTES A TRAVES DE LA MEMBRANA CELULAR

la célula necesita este proceso porque es importante para esta expulsar de su interior los desechos del metabolismo y adquirir nutrientes del líquido extracelular, gracias a la capacidad de la membrana celular que permite el paso o salida de manera selectiva de algunas sustancias. Las vías de transporte a través de la membrana celular y los mecanismos básicos para las moléculas de pequeño tamaño son:

El transporte pasivo es el intercambio simple de moléculas de una sustancia a través de la membrana plasmática, durante el cual no hay gasto de energía que aporta la célula, debido a que va a favor del gradiente de concentración o a favor de gradiente de carga eléctrica, es decir, de un lugar donde hay una gran concentración a uno donde hay menor. El proceso celular pasivo se realiza por difusión. En sí, es el cambio de un medio de mayor concentración (medio hipertónico) a otro de menor concentración (un medio hipotónico).

Algunas sustancias pasan al interior o al exterior de las células a través de una membrana semipermeable, y se mueven dentro de éstas por Difusión simple, siendo un proceso físico basado en el movimiento al azar. La difusión es el movimiento de átomos, moléculas o iones de una región de mayor concentración a una de menor concentración sin requerir gasto de energía. La difusión implica, no sólo el movimiento al azar de las partículas hasta lograr la homogénea distribución de las mismas (y esto ocurre cuando las partículas que azarosamente vienen se equiparan con las que azarosamente van) sino también el homogéneo potencial químico del fluido, ya que de existir una membrana semipermeable que particione un fluido en dos de distinto potencial químico, se generará una presión osmótica desde el potencial químico mayor (p.e. solvente puro) hacia el menor (p.e. solvente y soluto) hasta que ambas particiones se equiparen o la presión hidrostática equilibre la presión osmótica.[1

Es el movimiento de moléculas más grandes que no pueden pasar a través de la membrana plasmática y necesita ayuda de una proteína u otros mecanismos (endocitosis) para pasar al otro lado. También se llama difusión mediada por portador porque la sustancia transportada de esta manera no suele poder atravesar la membrana sin una proteína portadora específica que le ayude. Se diferencia de la difusión simple a través de conductos en que mientras que la magnitud de la difusión simple se incrementa de manera proporcional con la concentración de la sustancia que se difunde, en la difusión facilitada la magnitud de difusión se aproxima a un máximo (Vmax), al aumentar la concentración de la sustancia.

La filtración o dialisis es el movimiento de agua y moléculas disueltas a través de la membrana debido a la presión hidrostática generada por el sistema cardiovascular. Dependiendo del tamaño de los poros de la membrana, sólo los solutos con un determinado tamaño pueden pasar a través de la membrana. Por ejemplo, los poros de la membrana de la cápsula de Bowman en los glomérulos renales, son muy pequeños, y sólo la albúmina, la más pequeña de las proteínas, tienen la capacidad de ser filtrada a través de ella. Por otra parte, los poros de las membranas de los hepatocitos son extremadamente grandes, por lo que una gran variedad de solutos pueden atravesarla.

La ósmosis es un tipo especial de transporte pasivo en el cual sólo las moléculas de agua son transportadas a través de la membrana. El movimiento de agua se realiza desde un punto en que hay mayor concentración a uno de menor para igualar concentraciones. De acuerdo al medio en que se encuentre una célula, la ósmosis varía. La función de la osmosis es mantener hidratada a la membrana celular. Dicho proceso no requiere gasto de energía. En otras palabras la ósmosis u osmosis es un fenómeno consistente en el paso del solvente de una disolución desde una zona de baja concentración de soluto a una de alta concentración del soluto, separadas por una membrana semipermeable. Se relaciona con el movimiento browniano.

CLASIFICACION DE PLANTAS Y ANIMALES

En biología, identificación, denominación y agrupamiento de organismos en un sistema establecido. Las numerosas formas de vida que existen deben ser nombradas y organizadas de manera ordenada, de modo que los biólogos de todo el mundo puedan estar seguros de que conocen el organismo exacto que es objeto de estudio.

La definición de los grupos de organismos debe basarse en la selección de características importantes, o rasgos compartidos, responsables de que los miembros de cada grupo sean semejantes entre sí, y diferentes de los de otros grupos. Los métodos actuales de clasificación tratan también de reunir los grupos en categorías, de modo que éstas reflejen los procesos evolutivos que subyacen bajo las similitudes y diferencias que existen entre los organismos. Dichas categorías forman un tipo de pirámide, o jerarquía, donde los distintos niveles representan los diferentes grados de relación evolutiva.

La clasificación de plantas y animales por semejanzas estructurales fue establecida sobre bases sistemáticas firmes por el biólogo sueco Carl von Linne o Linneo.

Puesto muchas semejanzas estructurales dependen de relaciones de evolución, la clasificación moderna de los organismos es en muchos puntos semejante a la de Linneo basada en similitudes estructurales lógicas.

La unidad de clasificación para plantas y animales es la especie. Este término es difícil de definir pero podemos aproximarnos si decimos que es un grupo de individuos semejantes en cuanto a características estructurales y funcionales, que en la naturaleza sólo se reproducen entre sí y tienen un antecesor en común. Las especies vecinas se agrupan en géneros. El género es una unidad superior.

Dentro de los seres vivos se reconocen dos reinos, el Vegetal y el Animal, ya desde que Aristóteles estableció la primera taxonomía en el siglo IV a.C. Las plantas con raíces son tan diferentes en su forma de vida y en su línea evolutiva de los animales móviles y que ingieren alimentos, que el concepto de los dos reinos ha permanecido intacto hasta hace poco. Sólo en siglo XIX, bastante después de saber que los organismos unicelulares no se ajustaban adecuadamente a ninguna de las dos categorías, se propuso que éstos formaran un tercer reino, Protista. Mucho tiempo después de que se descubriera que la fotosíntesis era la forma básica de nutrición de las plantas, los hongos, que se alimentan por absorción, continuaban siendo clasificados como plantas debido a su aparente modo de crecimiento mediante raíces.

En la actualidad, debido al gran desarrollo que han experimentado las técnicas para estudiar la célula, se ha puesto de manifiesto que la división principal de los seres vivos no es entre vegetales y animales, sino entre organismos cuyas células carecen de envoltura nuclear y organismos cuyas células tienen membrana nuclear. Los primeros se denominan procariotas (anteriores al núcleo) y los segundos eucariotas (núcleos verdaderos). Las células procarióticas también carecen de orgánulos, mitocondrias, cloroplastos, flagelos especializados, y otras estructuras celulares especiales, alguna de las cuales aparece en las células eucarióticas. Las bacterias y las algas verdeazuladas son células procarióticas, y las taxonomías modernas las han agrupado en un cuarto reino, Monera, también conocido como el reino de los Procariotas.

Las células eucarióticas se desarrollaron con posterioridad y pueden haber derivado de asociaciones simbióticas de las células procarióticas. El reino Protista está compuesto por diversos organismos unicelulares que viven aislados o formando colonias. Se cree que cada uno de los reinos multicelulares se ha desarrollado más de una vez a partir de antecesores protistas. El reino Animal comprende los organismos que son multicelulares, tienen sus células organizadas en diferentes tejidos, son móviles o tienen movilidad parcial gracias a tejidos contráctiles, y digieren alimentos en su interior. El reino Vegetal o de las Plantas está formado por organismos multicelulares que en general tienen paredes celulares y que contienen cloroplastos donde producen su propio alimento mediante fotosíntesis. El quinto reino, los Hongos, incluye los organismos multicelulares o multinucleados que digieren los alimentos externamente y los absorben a través de superficies protoplasmáticas tubulares denominadas hifas (de las que están formados sus cuerpos).

GRUPOS TAXONOMICOS

El trabajo de muchos científicos ha ido identificando, estudiando y clasificando a los distintos seres vivos. Cuando se encuentra un organismo cuyas características son distintas de todos los conocidos hasta ahora se le pone un nuevo nombre y se le clasifica en alguno de los grupos ya existentes o, más raramente, se hace un nuevo grupo para él, si es muy diferente de todos los anteriores.

Los nombres científicos de las especies están formados por dos palabras latinas, la primera designa el género al que pertenece. Así, por ejemplo, el nombre científico de la encina es Quercus ilex. Es una especie del género Quercus, en el que hay otras especies distintas. Por ejemplo Quercus robur, el roble pedunculado que forma los grandes robledales de fondo de valle, o Quercus rubra, el roble americana, etc.

Los géneros parecidos forman familias, las familias se agrupan en ordenes, estos en clases y las clases en tipos o phylla.

Durante muchos tiempo era habitual agrupar a todos los seres vivos en dos grandes reinos, el de las Plantas y el de los Animales. Esta distribución es muy clara cuando pensamos en las plantas y animales superiores, pero cuando se intentaba situar en estos reinos otros organismos como los hongos, bacterias, protozoos y algas unicelulares había muchas dificultades. Para hacer frente a esta dificultad hace unas décadas se hizo corriente agruparlos en cinco reinos:

* Monera.- Incluye las bacterias y las cianobacterias o algas verdeazuladas. Sus células son procarióticas (sin envoltura nuclear).
* Protista.- Organismos unicelulares o pliricelulares muy sencillos. Sus células son eucarióticas.
* Fungi.- Incluye los hongos. Son organismos que se alimentan secretando enzimas digestivos que digieren la comida en el exterior del organismo y absorbiendo los nutrientes ya digeridos.
* Plantae.- Las plantas. Su nutrición es por fotosíntesis
* Animalia.- Los animales. Son heterotrofos y necesitan nutrirse de moléculas orgánicas complejas.

LA TAXONOMIA

La taxonomia es un tipo de nomenclatura que comenzó a utilizarse gracias al naturalista Carl Von Linné allá por mediados de 1700. Cada taxón o grupo taxonómico recibe un nombre (científico) en latín . Esto es lo que lo vuelve un método universal de clasificación de los animales.
Los taxones supraespecíficos (clase, orden, familia, género) tienen un solo nombre, pero los taxones de la categoría especie se designan con dos nombres y por eso se denomina a este sistema de clasificacion "nomenclatura binominal".
La nomenclatura binominal fue inventada por Linneo y designa a cada especie con dos nombres en latin.
El primero (siempre en mayúscula) indica el género. El segundo (en minúscula) el de la especie.
¿Pero que es una especie?
Para muchos el criterio para definir una especie es la posibilidad de fecundación, es decir, pertenecen a una especie todos los animales que son capaces de procrear entre si. Aunque también se utiliza el criterio morfológico, por el cual se considera de la misma especie a todos los individuos relacionados entre si por semejanzas genotípicas y fenotípicas.
Cada especie animal tiene exigencias particulares respecto de las cantidades y cualidades de elementos físicos (temperatura, presión, humedad, iluminación,etc), químicos y de biomasa ( organismos evegetales y animales que los rodean). Por lo general cada especie solo puede soportar variaciones limitadas de estos factores.
El reino animal se divide en tres subreinos: metazoos, parazoos y protozoos. El subreino de los parazoos comprende organismo formados por distintas células pero que no constituyen verdaderos tejidos (Poríferas). El subreino de los protozoos comprende a los animales unicelulares (Infusorios, Cnidosporidios Esporozoos, Flagelados y Rizópodos).El subreino de los metazoos comprende los animales pluricelulares (constituidos por muchas células diferenciadas para formar los tejidos que los constituyen).
El subreino de los metazoos está formado por casi 30 tipos de animales ( vertebrados, cefalocordados, urocordados, etc.).
Los animales del tipo vertebrados son los metazoos superiores que tienen esqueleto interno (endoesquelto). Los vertebrados se dividen en siete clases que presentan además otras caracteristicas en comun.
Las siete clases que forman el tipo vertebrados son: mamíferos, aves, reptiles, anfibios, peces óseos, peces cartilaginosos y ciclóstomos. A su vez, cada clase se divide en subclases y cada subclase en superórdenes. Cada superórden se divide en órdenes y cada órden en familias y cada familia en géneros.
De modo que para definir a un animal se sigue la siguiente secuencia:
Reino
Subreinos
Tipos
Clases
Subclases
Superórdenes
Órdenes
Familias
Géneros
Especies

Y así cuando hablamos del lagarto verde (Lacerta viridis) este nombre latinizado está compuesto primero (en mayúscula) por el género al que pertenece y segundo ( en minúscula) por lo que sería el nombre específico que lo diferencia de las otras especies que corresponden al mismo género.

ORIGEN DE LOS ORGANISMOS

La cuestión del origen de la vida ha constituido desde hace mucho tiempo un desafío para la imaginación, pero puesto que no disponemos de una "máquina del tiempo" como la utilizada por el personaje de la novela de H. G. Wells, los intentos de reconstruir la génesis de la vida en el ambiente de la Tierra primitiva tienen mucho de temerario. Esto es así sobre todo porque no existen fósiles de los primeros seres vivos que colonizaron nuestro planeta. Los microfósiles más antiguos tienen tres mil seiscientos millones de años (3,6 eones). Sin embargo, los científicos han obtenido pruebas geológicas indirectas según las cuales la capacidad de fijar anhídrido carbónico, que es expresión de la existencia de seres vivos capaces de realizar fotosíntesis (es decir, de aprovechar la energía de la radiación solar para formar los compuestos necesarios para su supervivencia), apareció hace 3,8 eones.

La formación de la Tierra tuvo lugar hace 4,6 eones, pero su superficie se habría tornado menos inhóspita para la acumulación de compuestos orgánicos hace entre 4,2 y 4 eones. De manera tal que la vida, en su forma más primitiva, podría haber necesitado para surgir incluso menos de 0,4 eones, un tiempo muy breve en términos del calendario geológico. En ese exiguo espacio de tiempo, que nos lleva hasta los 3,8 eones antes mencionados, habría tenido lugar una serie encadenada de eventos bioquímicos capaces de conducir hasta la generación de aquellos primeros organismos con capacidad fotosintética.

La primera hipótesis consistente acerca de los procesos químicos que habrían dado origen a la vida fue la formulada por el bioquímico ruso Alexander I. Oparin. La traducción al inglés de su libro sobre el tema apareció en 1938 con el título de The Origin of Life y causó gran impacto. En esta obra se revisaban y ampliaban hipótesis que Oparin originalmente había publicado en una revista rusa poco conocida, la Proiskhjozdenic Zhizny. Este científico proponía que, después de la formación de la atmósfera primitiva de la Tierra, se había producido una serie de eventos químicos que aumentaron la complejidad de las moléculas existentes, determinando que moléculas primitivas se transformaran en estructuras coloidales llamadas "coacervados" de los que habría surgido una nueva organización de la materia: la vida. (Los coloides son suspensiones de partículas cuyo diámetro puede variar desde una milésima hasta diez millonésimas de milímetro. La asociación de estas partículas entre sí y con parte del solvente forma minúsculas gotas llamadas coacervados.) Según Oparin, este largo proceso de generación espontánea de la vida podría (y debería) ser reproducido en el laboratorio.

Esta hipótesis chocaba, sin embargo, con un obstáculo difícil de superar. En efecto, si bien era probable que se hubieran formado estructuras coloidales análogas a los coacervados, las cuales podrían haber estado constituidas por la asociación de macromoléculas, tal vez de estructura proteica y con capacidad de acelerar determinadas reacciones químicas sin sufrir por ello cambios permanentes (capacidad catalítica), resultaba muy difícil de explicar cómo habrían desarrollado esas estructuras un código genético. Por ello, la hipótesis de los coacervados fue paulatinamente abandonada, aunque la filosofía de Oparin sobre la evolución química todavía sirve de base para todos los estudios sobre el origen de la vida.

OBJETIVOS

Objetivos para largo y corto plazo

· -Obtener información acerca de los grupos taxonómicos actualmente estudiados.
· -Individualizar los grupos de investigación que desarrollan estos estudios.
· - Particularizar las regiones geográficas para cada grupo estudiado.
· -Conformar una red de Centros provinciales de coordinación de la IMT coordinados por los dos Centros nacionales, para facilitar el acceso a la información.
· -Realizar una evaluación del estado de situación sobre la base de la información obtenida.
· -Estimar el grado de avance del conocimiento en cada taxón.
· -Buscar financiamiento para la implementación del plan de trabajo de la IMT en la Argentina
· -Conformar un listado electrónico de expertos para generar una red taxonómica Nacional de consulta a nivel Nacional e Internacional.
Identificar grupos taxonómicos y/o disciplinas con escaso o ningún desarrollo en nuestro país.
· -Para cada grupo taxonómico generar un mapa geográfico que identifique las áreas de mayor y menor exploración.
· -Compilar información acerca de los grupos de trabajo de investigación en disciplinas taxonómicas
· -Generar una lista de expertos en los diferentes grupos.
· -Difundir los objetivos de la GTI.
· -Identificar mecanismos de financiamiento para el desarrollo de disciplinas taxonómicas con énfasis en aquellas con escaso o nulo representación en el país.
· -Desarrollar una red taxonómica Nacional.
· -Definir los problemas que dificultan o impiden el desarrollo de la taxonomía en nuestro país y colaborar con las soluciones factibles.

PERFIL DEL ESTUDIANTE COLONISTA



Son las distintas manifestaciones que fortalecen las dimensiones del ser a lo largo de su proceso formativo que lo identifican como estudiante y lo enriquecen en su proyecto de vida.
RASGOS CARACTERÍSTICOS:
  1. Autonomo,capaz de ser crítico para tomar decisiones.
  2. Solidario, capaz de compartir con otras personas y ponerse al servicio de la Comunidad Educativa.
  3. Honesto, capaz de optar siempre por la verdad, actuar con idoneidad y rectitud.
  4. Tolerante y pacifico, capaz de resolver los conflictos por la vía del diálogo civilizado y la no-violencia activa, respetar y aceptar puntos de vista y opiniones del otro.
  5. Creativo, capaz de integrar, proyectar sus conocimientos y habilidades en forma original e innovadora, dar respuestas a las exigencias y necesidades de una sociedad cambiante.
  6. Responsable, capaz de asumir y cumplir sus compromisos como persona, hijo(a), estudiante, creyente, etc., consciente de que sus acciones favorecen o limitan el desarrollo social.
  7. Amoroso, capaz de propiciar relaciones interpersonales basadas en el respeto mutuo y la empatía.
  8. Ecologico, con profundo sentido de conservación y respeto hacia la naturaleza, comprometido con el mejoramiento de su entorno (familiar, social, escolar).
  9. Investigativo, con espíritu de excelencia académica, procurar la construcción de nuevos saberes que favorezcan el desarrollo científico, tecnológico y social.
  10. Creyente, convencido de que Dios es el principio y fundamento de la realización humana; integra a su vida cotidiana los valores de la fe, la justicia, la reconciliación, la esperanza y la caridad.
  11. Lider, capaz de transformar el contexto social, político y económico con base en la equidad.
  12. Civico, capaz de expresar su sentido de pertenencia a través del respeto y el amor por su familia, Institución, región y país; y con espíritu altruista asumir la condición de ser colombiano
MISION:

La comunidad educativa COLEGIO COLÓN, de acuerdo con el medio socio-cultural y ético, está formando un individuo capaz de desenvolverse en todos los medios teniendo en cuenta sus principios, valores, tradiciones y costumbres; que se preocupe por liderar acciones, que sea participativo, responsable, comunicativo y se desenvuelva profesionalmente; que valorando sus derechos y conociendo sus deberes asuma una actitud de respeto y defensa de los derechos de las demás personas. La misión de nuestra comunidad educativa se proyecta en la búsqueda de saberes científico-tecnológicos que responda a los intereses actuales, al desarrollo del Distrito Industrial y Portuario de Barranquilla. Para la realización de su labor formativa, cuenta con herramientas pedagógicas necesarias para ejecutarlas como la calidad humana y profesional de directivos y docentes encargados de orientar al educando en sus vivencias diarias, a fin de que desarrolle un proyecto de vida que incluya no sólo las recomendaciones y guías para trabajar por los demás, sino experiencias y actividades en las cuales aplique y brinde a las personas más necesitadas, sus saberes como proyección solidaria comprometida con aportes puntuales, para la construcción de una sociedad próspera y pacífica.

VISION

La comunidad educativa COLEGIO COLÓN, de acuerdo con el medio socio-cultural y ético, está formando un individuo capaz de desenvolverse en todos los medios teniendo en cuenta sus principios, valores, tradiciones y costumbres; que se preocupe por liderar acciones, que sea participativo, responsable, comunicativo y se desenvuelva profesionalmente; que valorando sus derechos y conociendo sus deberes asuma una actitud de respeto y defensa de los derechos de las demás personas. La misión de nuestra comunidad educativa se proyecta en la búsqueda de saberes científico-tecnológicos que responda a los intereses actuales, al desarrollo del Distrito Industrial y Portuario de Barranquilla. Para la realización de su labor formativa, cuenta con herramientas pedagógicas necesarias para ejecutarlas como la calidad humana y profesional de directivos y docentes encargados de orientar al educando en sus vivencias diarias, a fin de que desarrolle un proyecto de vida que incluya no sólo las recomendaciones y guías para trabajar por los demás, sino experiencias y actividades en las cuales aplique y brinde a las personas más necesitadas, sus saberes como proyección solidaria comprometida con aportes puntuales, para la construcción de una sociedad próspera y pacífica.

temas a realizar

  1. El origen de los organismos
  2. La taxonomia
  3. Grupos taxonomicos de los microorganismos
  4. Clasificacion de las plantas y animales
  5. Transporte a traves de la membrana celular
  6. Grupos taxonomicos segun sus celulas

grupos taxonomicos